A backward-induction algorithm for computing the best convex contrast of two bivariate samples
نویسنده
چکیده
For real-valued x1, x2 , ..., xn with real-valued “responses” y1, y2 , ...,yn and “scores” s1, s2, ..., sn we solve the problem of computing the maximum of C(k) = Σh=1,...,n sh I[yh ≥ k(xh)] over all convex functions k on R1. The article describes a recursive relation and an algorithm based on it to compute this value and an optimal k in O(n3) steps. For a special choice of scores, max C(k) can be interpreted as a generalized (one-sided) Kolmogorov-Smirnov statistic to test for treatment effect in nonparametric analysis of covariance.
منابع مشابه
SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملON THE POWER FUNCTION OF THE LRT AGAINST ONE-SIDED AND TWO-SIDED ALTERNATIVES IN BIVARIATE NORMAL DISTRIBUTION
This paper addresses the problem of testing simple hypotheses about the mean of a bivariate normal distribution with identity covariance matrix against restricted alternatives. The LRTs and their power functions for such types of hypotheses are derived. Furthermore, through some elementary calculus, it is shown that the power function of the LRT satisfies certain monotonicity and symmetry p...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملAsymptotic algorithm for computing the sample variance of interval data
The problem of the sample variance computation for epistemic inter-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the samp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007